2015-2016 Scope and Sequence Mathematics 3rd Grade | Quarter | Unit | Pacing | Topic | |-----------|------|---------|--| | Quarter 1 | 1 | 35 days | Becoming a 3 rd Grade Mathematician: Applying
Place Value Strategies to Round, Add, and Subtract
Units of Measurement | | Quarter 2 | 2 | 48 days | Modeling Multiplication and Division:
Relationships and Properties | | | 3 | 28 days | Relating Area to Multiplication and Division | | Quarter 3 | 4 | 45 days | Exploring Fractional Values and Equivalence | | Quarter 4 | 5 | 20 days | Geometric Problem Solving | #### **3rd Grade End of Year Fluency Expectations** According to the PARCC Model Content Framework, 3rd grade scholars must be able to demonstrate their ability to do the following with fluency: I. Add and Subtract within 1,000 using the Standard Algorithm II. Multiply and Divide within 100 #### Unit 1: Becoming a 3rd Grade Mathematician: Applying Place Value Strategies to Round, Add, and Subtract Units of Measurement 35 Days | Common Core State Standards | Fluency | |---|--| | Major Standards 3.MD.1: Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram. 3.MD.2: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l).¹ Add, subtract, multiply, ordividetosolve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. 3.OA.8: Solve twostep word problems using the four operations [addition and subtraction]. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. 3.OA.9: Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends. Additional Standards 3.NBT.1: Use place value understanding to round whole numbers to the nearest 10 or 100. 3.NBT.2: Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. | Level I Mentally Add and Subtract within 20 Level II Add and Subtract within 100 Level III Mentally Add and Subtract 10 or 100 | # Unit 2: Modeling Multiplication and Division: Relationships and Properties 48 Days | 48 Days | | | | |--|--|--|--| | Common Core State Standards | Fluency | | | | Major Standards 3.0A.1: Interpret products of whole numbers, e.g., interpret 5 × 7 as the total number of objects in 5 groups of 7 objects each. | Level I
Add and Subtract
within 100 | | | | 3.0A.2: Interpret whole-number quotients of whole numbers, e.g., interpret 56 ÷ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as 56 ÷ 8. 3.0A.3: Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement | Level II Add and Subtract within 1,000 Level III Multiply within 100 *Note: Students should not practice fact fluency | | | | quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. 3.0A.4: Determine the unknown whole number in a multiplication or division equation relating three whole numbers. <i>For example, determine the unknown number that makes the equation true in each of the equations</i> $8 \times ? = 48$, $5 = _ \div 3$, $6 \times 6 = ?$ | before conceptual understanding (i.e. no student should start fluency practice at this level at the very beginning of this unit) | | | | 3.0A.5: Apply properties of operations as strategies to multiply and divide. ² Examples: If $6 \times 4 = 24$ is known, then $4 \times 6 = 24$ is also known. (Commutative property of multiplication.) $3 \times 5 \times 2$ can be found by $3 \times 5 = 15$, then $15 \times 2 = 30$, or by $5 \times 2 = 10$, then $3 \times 10 = 30$. (Associative property of multiplication.) Knowing that $8 \times 5 = 40$ and $8 \times 2 = 16$, one can find 8×7 as $8 \times (5 + 2) = (8 \times 5) + (8 \times 2) = 40 + 16 = 56$. (Distributive property.) | | | | | 3.0A.6: Understand division as an unknown-factor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8 . | | | | | 3.0A.7: Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5 = 40$, one knows $40 \div 5 = 8$) or properties of operations. By the end of Grade 3, knowfrom memory all products of two one-digit numbers. | | | | | 3.0A.8: Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. | | | | - **3.0A.9:** Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends. - **3.MD.2:** Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). 1 Add, subtract, multiply, or divide to solve one---step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. ### Supporting Standards **3.MD.3:** Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets. **3.NBT.3:** Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., 9×80 , 5×60) using strategies based on place value and properties of operations. | Unit 3: Relating Area to Multiplication and Division | |--| | 28 Days | | 28 Days | | | |---|---------------------------------------|--| | Common Core State Standards | Fluency | | | Major Standards 3.MD.5: Recognize area as an attribute of plane figures and understand concepts of area measurement. | Level I Add and Subtract within 1,000 | | | 3.MD.5a: A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area. | Level II Multiply within 100 | | | 3.MD.5b: A plane figure that can be covered without gaps or overlaps by n unit squares has an area of n square units. | Level III Divide within 100 | | | 3.MD.6: Measure areas by counting unit squares | | | | 3.MD.7: Relate area to the operations of multiplication and addition. | | | | 3.MD.7a: Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths. | | | | 3.MD.7b: Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning. | | | | 3.MD.7c: Use tiling to show in a concrete case that the area of a rectangle with wholenumber side lengths a and $b + c$ is the sum of $a \times b$ and $a \times c$. Use area models to represent the distributive property in mathematical reasoning. | | | | 3.MD.7d: Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems. | | | | 3.0A.4: Determine the unknown whole number in a multiplication or division equation relating three whole numbers. | | | | Additional Standards | | | | 3.MD.8: Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters. | | | | Unit 4: Exploring Fractional Values and Equivalence | |---| | 45 Days | | 45 Days | | | |---|---|--| | Common Core State Standards | Fluency | | | Major Standards 3.NF.1: Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a/b as the quantity formed by a parts of size 1/b. 3.NF.2: Understand a fraction as a number on the number line; represent fractions on a number line diagram. 3.NF.2a: Represent a fraction 1/b on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size 1/b and that the endpoint of the part based at 0 locates the number 1/b on the number line. | Level I Multiply within 100 Level II Divide within 100 Level III Multiply and Divide within 100 | | | 3.NF.2b: Represent a fraction a/b on a number line diagram by marking off a lengths $1/b$ from 0. Recognize that the resulting interval has size a/b and that its endpoint locates the number a/b on the number line. | | | | 3.NF.3: Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. | | | | 3.NF.3a: Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line. | | | | 3.NF.3b: Recognize and generate simple equivalent fractions, e.g., $1/2 = 2/4$, $4/6 = 2/3$. Explain why the fractions are equivalent, e.g., by using a visual fraction model. | | | | 3.NF.3c: Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. <i>Examples:</i> Express 3 in the form $3 = 3/1$; recognize that $6/1 = 6$; locate $4/4$ and 1 at the same point of a number line diagram. | | | | 3.NF.3d: Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model. | | | | | | | | Supporting Standards | | |---|--| | 3.MD.4: Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—w hole numbers, halves, or quarters. | | | 3.G.2: Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as 1/4 of the area of the shape. | Unit 5: Geometric Problem Solving
20 Days | | |--|--------------------------------| | Common Core State Standards | Fluency | | Supporting Standards | Multiply and Divide within 100 | | 3.MD.4: Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters. | | | 3.G.1: Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories. | | | 3.G.2: Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as 1/4 of the area of the shape. | | | Additional Standards | | | 3.MD.8: Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters. | | | | |